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We study the spatially synchronized and temporally periodic solutions of a one-dimensional lattice of
coupled sine circle maps. We carry out an analytic stability analysis of this spatially synchronized and tempo-
rally periodic case and obtain the stability matrix in a neat block diagonal form. We find spatially synchronized
behavior over a substantial range of parameter space. We have also extended the analysis to higher spatial
periods with similar results. Numerical simulations for various temporal periods of the synchronized solution
reveal that the entire structure of the Arnold tongues and the devil’s staircase seen in the case of the single
circle map can also be observed for the synchronized coupled sine circle map lattice. Our formalism should be
useful in the study of spatially periodic behavior in other coupled map lattices.

PACS number~s!: 05.45.1b

The study of complex dynamical behavior in extended
systems is currently of interest in a wide variety of contexts.
The modeling and characterization of spatiotemporal behav-
ior in such systems@1,2# can provide insights into the com-
plex behavior found in diverse systems like oscillator arrays
@3–8#, coupled Josephson junction arrays@9#, reaction diffu-
sion systems@10,11#, charge density waves@12#, biological
systems@13,14#, and turbulence in fluids@15#. The spatially
extended nature of the system permits the appearance of
complex spatiotemporal behavior such as spatially periodic,
quasiperiodic, or chaotic behavior with the concurrent ap-
pearance of temporally periodic, quasiperiodic, or chaotic
behavior. An understanding of the rich variety of modes
which can be excited due to the interplay between spatial and
temporal behavior may provide a clue to phenomena like
pattern formation in natural systems@1,16,17# and turbu-
lence.

Coupled map lattice~CML! models have recently at-
tracted much attention in the study of spatiotemporal chaos
and pattern formation as models of spatially extended sys-
tems@1,2#. A CML is a dynamical system with discrete time,
discrete space, and continuous states. It consists of dynami-
cal elements on a lattice which are suitably coupled. Such
systems have been used succesfully to model real life phe-
nomena like spiral waves@16# and spatiotemporal intermit-
tency@18#. Though CML models are idealized systems, they
are sufficiently complex to be capable of capturing the es-
sential features of the dynamics of the system, and at the
same time have the advantage of being mathematically trac-
table and computationally efficient.

Due to the large number of degrees of freedom in such
spatially extended systems, a variety of spatiotemporal phe-
nomena, like synchronization, intermittency, and spatiotem-
poral chaos, are observed. One of the most important and
interesting modes which can arise in such systems is the
mode corresponding to synchronized behavior, i.e., behavior
in which evolution at each spatial location is identical with
that at every other spatial location at any arbitrary instant of

time @see Fig. 1~a!#. Such synchronized behavior has been
observed in a number of spatially extended systems@19#, like
coupled oscillator arrays@5,9,20#, coupled pendulums@21#,
electronic oscillator circuits@22#, and in pattern formation
@23#. As coupled sine circle map systems@2# can constitute
models which capture many of the essential features of the
behavior of such systems, we address the problem of syn-
chronized or spatially homogeneous solutions in a 1D array
of coupled sine circle maps. The temporal evolution of these
states may be periodic, quasiperiodic, or chaotic in nature.
The present paper concentrates on synchronized states that
are temporally periodic in behavior.

The single circle map@24,25# is represented by

u t115 f ~u t!5u t1V2
K

~2p!
sin~2pu t! mod1, ~1!

whereu t is an angle at timet, which lies between 0 and 1,
K is the nonlinearity parameter, andV is the period of the
system forK50. This is one of the simplest representations
of physical phenomena involving periodic motion. This
simple dynamical system which exhibits a tendency to mode
lock, as the parameterK is increased, is particularly suitable
for the description of resonances between periodic motion
@24#. An extensive study by Baket al. @25# shows the pres-
ence of the Arnold tongues in theV2K space and complete
mode-locking, namely the devil’s staircase atK51. Since
the single sine circle map exhibits this tendency to mode-
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FIG. 1. ~a! The synchronized or spatial period 1 solution.~b!
The spatial period 4 solution. Each symbol in the figure represents
a distinct value of the variable of a lattice of eight sites at any time
t.
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lock, it is interesting to study whether an array of such sine
circle maps on a lattice suitably coupled would demonstrate
such a mode-locking spatially. Synchronization is the sim-
plest example of such a phenomenon and we focus our at-
tention on the synchronized states which are temporally pe-
riodic in an array of such coupled circle maps.

The specific model under study, is a one-dimensional~1D!
coupled map lattice of sine circle maps with nearest neighbor
diffusive symmetric normalized coupling~also called future
coupled Laplacian coupling! and periodic boundary condi-
tions, and is given by

u t11~ i !5~12e! f „u t~ i !…1
e

2
f „u t~ i11!…1

e

2
f „u t~ i21!… mod 1

5~12e!S u t~ i !1V2
K

~2p!
sin„2pu t~ i !…D1

e

2 H u t~ i11!1V2
K

~2p!
sin„2pu t~ i11!…

1u t~ i21!1V2
K

~2p!
sin„2pu t~ i21!…J mod1, ~2!

whereu t( i ) is the angular variable associated with thei th
site, at timet.

The parametersV andK are taken to be uniform at each
site and defined as in Eq.~2! for the single circle map, and
e which lies between 0 and 1 is the strength of the coupling
parameter.

We investigate in detail the phenomena of spatial syn-
chronization in a system of such coupled sine circle maps.
We identify the spatially homogeneous and temporally peri-
odic, quasiperiodic, and chaotic modes of the system. We
carry out a linear stability analysis to analyze the stability
properties of the spatially synchronized, temporally periodic
solutions. The independent variables of the problem are iden-
tified and the analysis is cast in terms of these independent
variables. This leads to a neat and simple block diagonal
form for the stability matrix. This permits us to identify the
regions in parameter space where synchronized solutions of
different temporal periods are stable. The limits of the mode-
locked interval for the temporal period-one case can be ex-
plicitly evaluated due to the fact that the stability matrix has
a block diagonal, block circulant structure, for this case. This
analysis is also extended to higher spatial periods. Our
method is quite general and should prove to be useful in the
study of spatially periodic behavior in other coupled map
lattice models as well.

The paper is divided into five sections. Section I discusses
the coupled shift map, which is the linear version of the
coupled circle map, namelyK50 in Eq. ~2!, and is thus the
simplest case. We identify the independent variables for this
system and recast the equation of evolution in terms of these
variables. We carry out a systematic linear stability analysis,
and obtain a neat form for the stability matrix. In Sec. II, we
extend the formalism to the system of coupled sine circle
maps, taking into account the nonlinear sine term as defined
in Eq. ~2! and cast the problem in terms of the independent
variables of this system. The linear stability analysis in terms
of these variables gives a neat block diagonal form for the
stability matrix. This is followed by an explicit calculation of
the eigenvalues for the synchronized solution and the evalu-
ation of the limits of the mode-locked interval for the fixed

point case. Section III presents the generalization to higher
spatial periods. In Sec. IV, the numerical simulations for the
higher temporal periods, of the synchronized solution, are
discussed. We extend the algorithm developed by Baket al.
@25#, for the single circle map, to the synchronized solution
of a system of coupled sine circle maps. Section V concludes
with results and a short discussion.

I. ANALYSIS FOR THE SHIFT MAP LATTICE

We begin by carrying out the analysis for the simplest
case of Eq.~2!, namely for K50, which is the case of
coupled shift maps.

The single shift map, i.e., the linear case of the single
circle map, namely,K50 in Eq. ~1!, is given by

u t115u t1V mod1. ~3!

This has periodic orbits for rational values ofV, i. e.,
V5P/Q, whereP andQ are any integers, and quasiperiodic
orbits for irrational values ofV.

Equation~2!, with K50, for the coupled shift map, for a
lattice ofN sites, retaining periodic boundary conditions, re-
duces to

u t11~ i !5~12e!@u t~ i !1V#1
e

2
@u t~ i11!1u t~ i21!#

1eV mod1. ~4!

For the synchronized solution, since the value of the vari-
able at all sites is the same, we note that differences of near-
est neighbor variable site values is equal to zero for all
neighbors. Writing an equation for such a difference for the
first pair of sites of an array ofN sites, for the coupled shift
map, we obtain
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u t11~1!2u t11~2!5~12e!@u t~1!2u t~2!#

1
e

2
@u t~2!2u t~3!1u t~N!2u t~1!#.

~5!

It is clear that Eq.~5! can be expressed completely in terms
of the differences defined by

at~ i !5u t~ i !2u t~ i11!. ~6!

The evolution equation of the differences is given by

at11~ i !5~12e!„at~ i !…1
e

2
@at~ i11!1at~ i21!# mod1.

~7!

Thus, for the synchronized solution of the coupled shift map,
it is sufficient to define justN differences, to obtain theN
equations of evolution in terms of independent variables.

Substitutingat( i )50, in Eq. ~7!, gives at11( i )50, and
hence shows thatat( i )50 is a spatial fixed point solution.

Expanding up to the linear term about this solution leads
to a stability matrixJt

shi f t , given by

Jt
shi f t51

~12e!
e

2
0 0 ••• 0 0

e

2

e

2
~12e!

e

2
0 0 ••• 0 0

0
e

2
~12e!

e

2
0 ••• 0 0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

e

2
0 0 ••• 0 0

e

2
~12e!

2 . ~8!

This is anN3N matrix, which is also circulant and whose
eigenvalues may be explicitly obtained analytically.

The eigenvalues ofJt
shi f t are given by@26, 27#

l r5~12e!1
e

2
~v r1v r

21!, ~9!

wherev r is theNth root of unity given by

v r5expS 2ip~r21!

N D . ~10!

On simplifying, this can be written as

l r5~12e!1e cosS 2p~r21!

N D r51,2, . . . ,N. ~11!

The largest eigenvalue of Eq.~11!, namely,l largest<1,
defines the stability condition for temporally stable and spa-
tially synchronized periodic orbits of the coupled shift map.
The largest eigenvalue is11, indicating that the coupled
shift map is marginally stable. We find that as long as the
differences between nearest neighbor sites tend to zero, we
obtain synchronized solutions, irrespective of the corre-
sponding temporal period. Since, the largest eigenvalue does

not depend one, we conclude that, for the synchronized
solution, there is no dependence of the coupling parameter
on the temporal behavior. Thus for the synchronized solu-
tion, the coupled shift map continues to have periodic orbits
for rational values ofV, and quasiperiodic orbits forV irra-
tional, similar to the single shift map and there is no enlarge-
ment in the phase space due to the coupling.

II. LINEAR STABILITY ANALYSIS FOR THE COUPLED
CIRCLE MAP LATTICE

We now carry out a similar linear stability analysis with
the nonlinear terms, i.e., for the coupled circle maps as de-
fined in Eq.~2! with KÞ0. We consider a 1D closed chain of
N lattice sites, with the sine circle map at each site, coupled
to its nearest neighbors via diffusive normalized symmetric
coupling and periodic boundary conditions, as in Eq.~2!,
such that the right hand neighbor of theNth point is the first
lattice point.

As discussed in the case of the coupled shift maps, for a
synchronized solution, it makes sense to consider the evolu-
tion of the differences. At any arbitrary timet we write an
equation similar to Eq.~5!, now for the coupled sine circle
map. Consider, as an example, the first pair of lattice sites, of
a lattice ofN sites, with evolution at each site defined as in
Eq. ~2!,
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u t11~1!2u t11~2!5~12e!H „u t~1!2u t~2!…2
K

p
sin~p„u t~1!2u t~2!…!cos~p„u t~1!1u t~2!…!J

1
e

2 H „u t~N!2u t~1!…1„u t~2!2u t~3!…2
K

p
sin~p„u t~N!2u t~1!…!cos~p„u t~N!1u t~1!…!

2
K

p
sin~p„u t~2!2u t~3!…!cos~p„u t~2!1u t~3!…!J mod1. ~12!

Equation~12! shows that for the coupled sine circle map, the evolution equation for differences between the variable values
of the nearest neighbors involves not just the differences between pairs of neighbors but also the sum of the variable values of
the nearest neighbors, unlike the coupled shift map where the evolution equation could be defined in terms of the differences
alone. However, it is interesting to note that for a synchronized solution, the difference of nearest neighbor lattice sites is zero,
and the sum of nearest neighbor lattice sites is a constant, for a fixedV andK. Therefore, we write a second equation for the
sums of the variables at nearest neighbor sites, and obtain

u t11~1!1u t11~2!5~12e!H „u t~1!1u t~2!…2
K

p
sin~p„u t~1!1u t~2!…!cos~p„u t~1!2u t~2!…!J

1
e

2 H „u t~N!1u t~1!…1„u t~2!1u t~3!…2
K

p
sin(p„u t~N!1u t~1!…cos~p„u t~N!2u t~1!…!

2
K

p
sin~p„u t~2!1u t~3!…!cos~p„u t~2!2u t~3!…!J 12V mod1 ~13!

which again involves both the sums and the differences of
nearest neighbors. It is clear that for the synchronized solu-
tion of a lattice of coupled sine circle maps, we now need to
defineN equations for the evolution of differences of nearest
neighbor sites andN equations for the evolution of sums of
nearest neighbor sites as compared toN differences alone for
the coupled shift map. This is due to the fact that the shift
map is a linear version of the circle map and in the case of
coupled circle maps the nonlinear sine term requires the
identification of the second independent variable. At any
time t, we define the differences and sums, of the nearest
neighbors, as follows:

at~ i !5u t~ i !2u t~ i11!, ~14!

bt~ i !5u t~ i !1u t~ i11!, ; i ;1, . . .N. ~15!

Using Eq.~2!, we find that thatat( i ) andbt( i ) evolve via
the following equations:

at11~ i !5~12e!S at~ i !2
K

p
sin„pat~ i !…cos„pbt~ i !…D

1
e

2 S at~ i11!2
K

p
sin„pat~ i11!…cos„pbt

3~ i11!…D1
e

2 S at~ i21!2
K

p
sin„pat

3~ i21!…cos„pbt~ i21!…D mod1 ~16!

and

bt11~ i !5~12e!S bt~ i !2
K

p
sin„pbt~ i !…cos„pat~ i !…D

1
e

2 S bt~ i11!2
K

p
sin„pbt~ i11!…cos„pat

3~ i11!…D1
e

2 S bt~ i21!2
K

p
sin„pbt

3~ i21!…cos„pat~ i21!…D12V mod1. ~17!

For a synchronized solution, as mentioned above, at any
time t,

at~ i !50, ~18!

bt~ i !5const5s. ~19!

Inserting these conditions, Eq.~16! reduces to

at11~ i !50 ~20!

implying thatat( i )50 is a spatial fixed point solution.
Similarly, Eq. ~17! reduces to

bt11~ i !5~12e!S s2
K

p
sin~ps! D1eS s2

K

p
sin~ps! D

12V mod1, ~21!

which is again a constant~not necessarily the same constant!
for a fixedV andK.
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Equation ~21! is not restricted to temporal evolution of
any particular kind, implying that this same equation may be
used to study temporally periodic, quasiperiodic, and chaotic
behavior. As an example,bt11( i ) 5’s the same constant will
indicate a temporal fixed point solution and so on.

Thus at( i ) 5 0 andbt( i ) 5 const are solutions of the
equations of evolution. We now perform a Taylor expansion
up to first order about these solutions to obtain the linear

stability matrixJt which is of order 2N32N and of the form

Jt5S At8 Bt8

Bt8 At8D , ~22!

where

At85S esAt~1! enAt~2! 0 ••• 0 enAt~N!

enAt~1! esAt~2! enAt~3! 0 ••• 0

0 enAt~2! esAt~3! ••• 0 0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

enAt~1! 0 ••• 0 enAt~N21! esAt~N!

D ~23!

and

Bt85S esBt~1! enBt~2! 0 ••• 0 enBt~N!

enBt~1! esBt~2! enBt~3! 0 ••• 0

0 enBt~2! esBt~3! ••• 0 0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

enBt~1! 0 ••• 0 enBt~N21! esBt~N!

D . ~24!

Here

es5~12e!,en5
e

2
. ~25!

Each

At~ i !5~12Kcos„pat~ i !…cos„pbt~ i !…! ~26!

and

Bt~ i !5~Ksin„pat~ i !…sin„pbt~ i !…!. ~27!

Imposing the conditionat( i )50, bt( i )5s the stability
matrix Jt , Eq. ~22! reduces to

Jt5S Mt 0

0 MtD , ~28!

where eachMt is anN3N circulant matrix given by

Mt5S esĀt~1! enĀt~2! ••• enĀt~N!

enĀt~1! esĀt~2! ••• 0

0 enĀt~2! ••• 0

•

•

•

•

•

•

•

•

•

•

•

•

enĀt~1! 0 ••• esĀt~N!

D . ~29!

For a synchronized solution all the lattice sites have the same
value and hence eachbt( i )5s ; i ,1, . . . ,N. Thus each

A t̄~ i !5@12Kcos~ps!#. ~30!

We thus have a block diagonal matrix with circulant
blocks. To study the stability of the homogeneous solution, it
is sufficient to obtain the eigenvalues of one of the blocks
Mt .

The eigenvalues ofMt are given by Eq.~9! @26,27#, but
are now of the form

l r5~12e!@12Kcos~ps!#1v r S e

2
@12Kcos~ps!# D

1v r
21S e

2
@12Kcos~ps!# D , ~31!

wherev r is defined as in Eq.~10!.
On simplifying, Eq.~31! can be written as
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l r5~12e!@12Kcos~ps!#

1e@12Kcos~ps!#cosS 2p~r21!

N D , r51,2, . . . ,N.

~32!

Now, ul r u,1, for all r, ensures the stability of the syn-
chronized solution. The largest eigenvaluel largest crossing
1, is the condition for marginal stability@26#.

As mentioned earlier, we have not assumed any temporal
periodicity while definingat( i ) andbt( i ). They have been
defined at any arbitrary timet. Thus, as long as the condition
for synchronization, i.e.,at( i )50 andbt( i )5const is satis-
fied, this formalism may be used to identify and model any
kind of synchronized temporal behavior.

For the synchronized solution, we can analytically obtain
those regions in theV2K2e space, for which the spatially
synchronized~i.e., spatial period 1!, and additionally tempo-
ral period 1 solution, is stable.

The fixed point case

For the temporal fixed point, i.e.,at11( i )5at( i )50 and
bt11( i )5bt( i )5s, there is also a synchronized solution and
hence also the spatial fixed point of the system. Using Eq.
~32!, the largest eigenvalue of the stability matrixJt is given
by

l largest5@12Kcos~ps!#. ~33!

Now, using the fixed point condition for Eq.~21!,

s5s2
K

p
sin~ps!12V. ~34!

This gives

s5
1

p
arcsinS 2pV

K D ~35!

Inserting this value ofs and using the condition for stability,
l largest561, in Eq.~33!, we obtain the width of the stability
interval,

DS VS 01D D5S 2K

2p
,
K

2p D . ~36!

This is the same width, as that obtained by Baket al. @25#
for the single circle map. This width is the width of that
region ofV, for which we obtain stable fixed point solutions.
Thus, we find that for the synchronized solution, the width of
the 0/1 interval for the coupled circle map case is identical to
that obtained for the single circle map@25#. However, in this
case it is the width of the 0/1 interval for each site, and since
the value ofV at each site is the same, for the entire lattice.
Thus, for the region ofV, defined by Eq.~36!, the entire
lattice has synchronized stable temporal fixed point solu-
tions.

For higher temporal periods, the stability matrixJt can be
obtained in the following way. For a periodQ orbit, Jt is
simply given by

Jt5)
t51

Q S At8 Bt8

Bt8 At8D , ~37!

where all the notation is the same as defined earlier.
Imposing the condition for a synchronized solution,

namely Eqs.~18! and~19!, Jt reduces to the following form:

Jt5)
t51

Q S Mt 0

0 MtD . ~38!

The widths of the higher temporal periods for the synchro-
nized case cannot be obtained analytically, as has previously
been observed in the case of the single circle map@25#. To
calculate the widths of the higher temporal periods, for the
synchronized solution we carry out numerical simulations
which have been discussed in Sec. IV. A detailed discussion
is presented in@29#.

Since the formalism set up here is sufficiently general, it
may also be used to model synchronization in other coupled
map systems. The next section extends the formalism for
solutions corresponding to arbitrary spatial periods.

III. ANALYSIS FOR THE kTH SPATIAL PERIOD

We find that the formalism discussed above may be effi-
ciently used to study the stability of higher spatial periods as
well. We extend it to higher spatial periods with the stability
matrix retaining its block diagonal form. By higher spatial
periods, say spatial period 4, we mean everyi th and
( i14)th lattice site will have the same value.@See Fig. 1~b!#.

We now extend this formalism to an arbitrary spatial pe-
riod k. At any time t, for a spatial periodk solution, the
value of the variable at thei th site is the same as the value at
the (i1k)th site. Thus, the difference between the variable
values of thei th and the (i1k)th site approaches zero, while
the sum of these variable values approaches a constant. As
discussed in Sec. II, now for a spatial periodk, we can show
that the differences and sums are again the independent vari-
ables of the system and are now defined as

at
k~ i !5u t~ i !2u t~ i1k!, ~39!

bt
k~ i !5u t~ i !1u t~ i1k!, ~40!

where the superscriptk denotes the spatial period at any time
t.

Equations~16! and ~17!, now for a spatial periodk, are
modified to

at11
k ~ i !5~12e!S atk~ i !2

K

p
sin„pat

k~ i !…cos„pbt
k~ i !…D

1
e

2 S atk~ i11!2
K

p
sin„pat

k~ i11!…cos„pbt
k

3~ i11!…D1
e

2 S atk~ i21!2
K

p
sin„pat

k

3~ i21!…cos„pbt
k~ i21!…D mod1 ~41!
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and

bt11
k ~ i !5~12e!S bt~ i !2

K

p
sin„pbt

k~ i !…cos„pat
k~ i !…D

1
e

2 S btk~ i11!2
K

p
sin„pbt

k~ i11!…cos„pat
k

3~ i11!…D1
e

2 S btk~ i21!2
K

p
sin„pbt

k

3~ i21!…cos„pat
k~ i21!…D12V mod1. ~42!

As shown in Sec. II, here too it can be easily shown that,

; i ,at
k( i )50 andbt

k( i )5sk , wheres1 ,s2 , . . . are all con-
stants, and are solutions of Eqs.~41! and ~42! for a fixed
V andK.

For a spatial periodk solution, we expand about
at
k( i )50 andbt

k( i ) 5 const and obtain the stability matrix
Jt
k ,

Jt
k5S At8

k Bt8
k

Bt8
k At8

kD , ~43!

where

At8
k5S esAt

k~1! enAt
k~2! 0 ••• 0 enAt

k~N!

enAt
k~1! esAt

k~2! enAt
k~3! 0 ••• 0

0 enAt
k~2! esAt

k~3! ••• 0 0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

enAt
k~1! 0 ••• 0 enAt

k~N21! esAt
k~N!

D ~44!

and

Bt8
k5S esBt

k~1! enBt
k~2! 0 ••• 0 enBt

k~N!

enBt
k~1! esBt

k~2! enBt
k~3! 0 ••• 0

0 enBt
k~2! esBt

k~3! ••• 0 0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

enBt
k~1! 0 ••• 0 enBt

k~N21! esBt
k~N!

D , ~45!

wherees ,en are defined by Eq.~25!. Here, each

At
k~ i !5~12Kcos„pat

k~ i !…cos„pbt
k~ i !…! ~46!

and

Bt
k~ i !5~Ksin„pat

k~ i !…sin„pbt
k~ i !…!. ~47!

Imposing the conditionsat
k( i )50 andbt

k( i )5sk , the sta-
bility matrix Jt

k given by Eq.~43! again reduces to a block
diagonal form

Jt
k5S Mt

k 0

0 Mt
kD , ~48!

where eachMt
k is of the form,

Mt
k5S esĀt

k~1! enĀt
k~2! ••• enĀt

k~N!

enĀt
k~1! esĀt

k~2! •••

0 enĀt
k~2! ••• 0

•

•

•

•

•

•

•

•

•

•

•

•

enĀt
k~1! 0 ••• esĀt

k~N!

D ~49!

and each

A¯t
k~ i !5@12Kcos~psm!#, ~50!

where eachm goes from 1, . . . ,k @28#. See Fig. 1~b! for an
illustration of spatial period 4.

Thus even for higher spatial periods, the stability matrix
Jt
k is in a block diagonal form, Eq.~48!. Finding the eigen-
values of the matrixMt

k , and the largest eigenvalue crossing
1 1, gives the region of stability of the periodk solution.
Further simplification of the matrixMt

k ~which is not circu-
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lant for thekÞ1 cases! on the lines of the replica method
@26# is possible and will be carried out elsewhere.

IV. NUMERICAL SIMULATIONS

We obtained the width ofD„V(0/1)…, the temporal period
1 case, for the synchronized solution analytically in Sec. II.
The higher temporal periods,DV(P/Q), for the synchro-
nized solution, are obtained numerically.

The widths,DV(P/Q), as also stated in Sec. II, are those
regions ofV, atK51, for which the entire lattice will have
temporally stable and spatially synchronized periodic solu-
tions of time periodQ.

We extend the algorithm developed by Baket al. @25#, in
the following manner.

For a lattice ofN sites we define the following vector
notation:

fW~uW ,VW !→$ f 1~uW ,VW !, f 2~uW ,VW !, . . . ,f N~uW ,VW !%, ~51!

wherei denotes the lattice index and eachf i(uW ,VW ) is defined
by Eq. ~2!. Eachu is now a vector of the form

~uW !→$u t~1!,u t~2!, . . . ,u t~N!% ~52!

and the parameterV, also a vector, is represented as

~VW !→$V~1!,V~2!, . . . ,V~N!%→$V,V, . . . ,V%.
~53!

V, in principle, may have different values at each site, but in
this case has the same value at each site.

For a 1D array of coupled sine circle maps, i.e., a multi-
dimensional case, the stability criterion is obtained by exam-
ining the eigenvalues of the followingN3N matrix:

St5)
t51

Q S ] f 1
]u t~1!

] f 1
]u t~2!

•••

] f 1
]u t~N!

] f 2
]u t~1!

] f 2
]u t~2!

•••

] f 2
]u t~N!

•

•

•

•

•

•

•

•

•

•

•

•

] f N
]u t~1!

] f N
]u t~2!

•••

] f N
]u t~N!

D . ~54!

Let $l i% be the set of eigenvalues of the matrixSt . For a
period Q orbit to be stable the eigenvalues of the matrix
St,1. The largest eigenvalue crossing 1 defines the marginal
stability condition.

Thus for the higher order temporal periods, we seek the
solution to the set of Eqs.~55! and ~56!,

fWQ~uW ,VW !5~uW !1PW , ~55!

the condition for closure, and

l largest51, ~56!

the condition for marginal stability.

For a generalP/Q step, and a lattice ofN sites, we start
with homogeneous initial conditions and perform the itera-
tive technique based on the Newton-Raphson method.

We define

gW 1~uW ,VW !5$g1~1!,g1~2!, . . . ,g1~N!%, ~57!

gW 2~uW ,VW !5H ] f 1
Q

]u t~1!
,

] f 2
Q

]u t~2!
, . . . ,

] f N
Q

]u t~N! J , ~58!

where

g1~1!5 f 1
Q~uW ,VW !2u~1!2P

and so on.
We further define

gW ~uW ,VW !5S g1W ~uW ,VW !

g2W ~uW ,VW !
D , ~59!

where now

gW 2~uW ,VW !5gW 2~uW ,VW !21W .

For the synchronized solution, it can be shown that the
largest eigenvalue of the matrix,St , namelyl

largest, is equal
to each of theN components ofgW 2 in Eq. ~58! @29#.

Therefore, Eqs.~55! and ~56! may now be expressed as
finding (uW * ,VW * ) such that

gW ~uW * ,VW * !5gW *50W . ~60!

Taylor expandinggW * , about the initial point of iteration,
gW (uW 0,VW 0)5gW 0 , up to the linear order, we obtain

gW *.g0W1DW M , ~61!

where

DW 5~uW * ,VW * !2~uW 0,VW 0! ~62!

M51
]g1~1!

]u t~1!
•••

]g1~1!

]u t~N!

]g1~1!

]V~1!
•••

]g1~1!

]V~N!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

]g1~N!

]u t~1!
•••

]g1~N!

]u t~N!

]g1~N!

]V~1!
•••

]g1~N!

]V~N!

]g2~1!

]u t~1!
•••

]g2~1!

]u t~N!

]g2~1!

]V~1!
•••

]g2~1!

]V~N!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

]g2~N!

]u t~1!
•••

]g2~N!

]u t~N!

]g2~N!

]V~1!
•••

]g2~N!

]V~N!

2 .

(63)

It is found that, for

gW *50W , ~64!
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DW .2M21gW 0 . ~65!

And so as a first approximation,

S uW * ,

VW *
D .S uW 1

VW 1D 52M21gW 01S uW 0

VW 0D . ~66!

All derivatives can be derived recursively@29#.
We start with homogeneous initial conditions, for the syn-

chronized case, and find, to initiate the iteration, it is conve-
nient to locate the superstable point (uW ,VW )5(uW s ,VW s), for all
the lattice sites, where now the eigenvalues of the matrix
St are equal to zero.

Using the algorithm discussed above, atK51 we obtain
the complete devil’s staircase, of periodic orbits, now in the
V2P/Q2e space~see Fig. 2! with all the special features
seen in the single circle map. All steps have been found to an
accuracy of 1028.

We also studied various features of the coupled sine circle
map lattice at lower values ofK and differentV ’s. Our simu-
lations reveal synchronized quasiperiodic orbits and periodic
orbits in theV2K2e space. We thus obtain the entire struc-
ture of the Arnold tongues~see Fig.3! now with the third
coupling dimensione. It is clear from Fig. 3 that the three
possible routes to chaos seen in the case of the single circle
map, i.e., via mode-locking alone, via quasiperiodicity and
mode-locking and via quasiperiodicity to chaos, will also be
seen for the coupled sine circle map lattice.

Thus for the synchronized solution, we obtain all the fea-
tures of the single map, now with a third dimension, in the
form of the coupling parameter. We also observe that for the
synchronized solution all the features as seen in the single
circle map are lifted exactly to this extra dimension in the
parameter space, namely the coupling parametere, for the
entire range, 0<e<1.

V. CONCLUSIONS

We have set up a formalism to analyze the phenomenon
of synchronization in a lattice of coupled sine circle maps.

We identify the independent variables, the differences and
the sums of variable values at neighboring sites,at( i ) and
bt( i ) for the problem and show that,at( i )50 and
bt( i )5const, the synchronized solution, are solutions of the
system under consideration. Casting the evolution equations
in terms of these independent variables leads to a stability
matrix which is in a neat block diagonal form. In addition,
these blocks have a circulant structure, so we have a block
diagonal matrix with circulant blocks. The temporal fixed
point case, for the synchronized solution, i.e., the spatial pe-
riod one and temporal period one solution can be solved
explicitly to obtain the corresponding width of the stability
interval. We have also demonstrated that this analysis can be
easily extended to higher spatial periods. For an arbitrary
spatial periodk, we identify the independent variables, now
at
k( i ) and bt

k( i ), and again show thatat
k( i )50 and

bt
k( i )5k const are solutions of the system. A linear stability
analysis for this case shows that the stability matrix retains
its block diagonal form. This analysis may also be easily
extended to spatially periodic behavior in other coupled map
systems. The analysis is one of the simplest presented so far
with the additional advantage of being transparent and neat.

We calculate the widths of the higher temporal periods for
the synchronized case, by extending the algorithm developed
by Baket al. @25#. Our numerical simulations reveal that for
the synchronized case, the entire structure of the Arnold
tongues and the devil’s staircase as observed for the single
circle map is lifted to the chain of coupled sine circle maps.

A study of the parameter basins of attraction, i.e., those
regions in theV2e space, where a particular class of initial
conditions converges to the synchronized solution, which is
the attractor, have also been carried out. These results which
have been presented elsewhere@29# showed that these re-
gions were found to be fairly large and showed an interesting
symmetry aboutV50.5. Random initial conditions also re-
vealed a finite basin of attraction, which was also symmetric
aboutV50.5. The numerical simulations for the random
initial conditions showed that there always exists a finite
region of theV2e parameter space, atK51, for which
synchronized solutions will be obtained. The temporal period

FIG. 2. The devil’s staircase for coupled sine circle maps. The
symmetry aboutV50.5 is clearly seen. The widths are calculated
for DV(P/Q) for P/Q 5 0/1, 1/1,1/2, 1/3, 2/3, 1/4, 3/4, 1/5,
2/5. This plot is for eight lattice sites, but for a synchronized solu-
tion, identical results are seen for anyN.

FIG. 3. Plot of the Arnold tongues, for the coupled sine circle
map lattice. The tongues have been plotted forV5P/Q starting
from P/Q 5 0/1, 1/1,1/2, 1/3, 2/3 This plot is for eight lattice sites,
but identical results are seen for anyN, for the synchronized solu-
tion.
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for these synchronized regions was found to be 1@29#.
Investigation of higher spatial periods reveals extremely

interesting structures, results of which will be presented else-
where. Our analysis was carried out for the homogeneous
case which assumed that the parameter values at each lattice
site were the same. However, the formalism setup is com-
pletely general and can be easily extended to inhomogeneous
cases. This should be useful for the study of lattices where
some lattice sites function as pinning sites.

We hope this work will find useful applications in the

study of spatially periodic behavior in systems like Joseph-
son junction arrays and coupled oscillator arrays and in stud-
ies of pattern formation, in reaction-diffusion systems, and
charge-density waves.
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