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Synchronization in coupled sine circle maps
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(Received 25 September 1995

We study the spatially synchronized and temporally periodic solutions of a one-dimensional lattice of
coupled sine circle maps. We carry out an analytic stability analysis of this spatially synchronized and tempo-
rally periodic case and obtain the stability matrix in a neat block diagonal form. We find spatially synchronized
behavior over a substantial range of parameter space. We have also extended the analysis to higher spatial
periods with similar results. Numerical simulations for various temporal periods of the synchronized solution
reveal that the entire structure of the Arnold tongues and the devil's staircase seen in the case of the single
circle map can also be observed for the synchronized coupled sine circle map lattice. Our formalism should be
useful in the study of spatially periodic behavior in other coupled map lattices.

PACS numbe(s): 05.45+b

The study of complex dynamical behavior in extendedtime [see Fig. 1a)]. Such synchronized behavior has been
systems is currently of interest in a wide variety of contexts.observed in a number of spatially extended systeif§ like
The modeling and characterization of spatiotemporal behawsoupled oscillator arrayg5,9,20, coupled pendulumfg21],
ior in such system§l,2] can provide insights into the com- electronic oscillator circuit§22], and in pattern formation
plex behavior found in diverse systems like oscillator arrayd23]. As coupled sine circle map systeff can constitute
[3—8], coupled Josephson junction arrd@$, reaction diffu- ~models which capture many of the essential features of the
sion system$10,11], charge density waved2], biological ~ behavior of such systems, we address the problem of syn-
systemg 13,14, and turbulence in fluidsl5]. The spatially ~ chronized or spatially homogeneous solutions in a 1D array
extended nature of the system permits the appearance 6f coupled sine circle maps. The temporal evolution of these
complex spatiotemporal behavior such as spatially periodicStates may be periodic, quasiperiodic, or chaotic in nature.
quasiperiodic, or chaotic behavior with the concurrent ap-The present paper concentrates on synchronized states that
pearance of temporally periodic, quasiperiodic, or chaotic@re temporally periodic in behavior.
behavior. An understanding of the rich variety of modes The single circle map24,29 is represented by
which can be excited due to the interplay between spatial and
temporal behavior may provide a clue to phenomena like
pattern formation in natural systeni4,16,17 and turbu-
lence.

Coupled map lattice(CML) models have recently at- \yhere, is an angle at time, which lies between 0 and 1,
tracted much attention in the study of spatiotemporal chaog is the nonlinearity parameter, a€¥l is the period of the
and pattern formation as models of spatially extended SySsysiem fork =0. This is one of the simplest representations
tems[l,Z].ACMLisadyqamical system with di_screte time, of physical phenomena involving periodic motion. This
discrete space, and continuous states. It consists of dynamgrmme dynamical system which exhibits a tendency to mode
cal elements on a lattice which are suitably coupled. Suchy,c a5 the parametdt is increased, is particularly suitable
systems have been used succesfully to model real life phgg, the description of resonances between periodic motion

nomena like spiral wavesl6] and spf'itiote_mporal intermit- [24]. An extensive study by Bakt al. [25] shows the pres-
tency[18]. Though CML models are idealized systems, theéYance of the Arnold tongues in te— K space and complete

are sufficiently complex to be capable of capturing the ©Stmode-locking, namely the devil's staircase K& 1. Since

sential features of the dynamics of the system, and at thge gingle sine circle map exhibits this tendency to mode-
same time have the advantage of being mathematically trac-

table and computationally efficient.
Due to the large number of degrees of freedom in such
spatially extended systems, a variety of spatiotemporalphe- 339 © ©0 O O O O O O
nomena, like synchronization, intermittency, and spatiotem-
poral chaos, are observed. One of the most important and
interesting modes which can arise in such systems is the
_mode_ correspondlng to synchro_nlzed be_ha\_nor, ie., behafwor ® O O 0 + o o 0 _|_
in which evolution at each spatial location is identical with
that at every other spatial location at any arbitrary instant of

K .
0t+l=f(0t)=0t+ﬂ_(2_7T)S|r\(2770t) modl, (1)

FIG. 1. (@) The synchronized or spatial period 1 solutigh)
The spatial period 4 solution. Each symbol in the figure represents
*Electronic address: nan@physics.unipune.ernet.in a distinct value of the variable of a lattice of eight sites at any time
TElectronic address: gupte@physics.unipune.ernet.in t.
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4458 NANDINI CHATTERJEE AND NEELIMA GUPTE 53
lock, it is interesting to study whether an array of such sine The specific model under study, is a one-dimensi¢ha)
circle maps on a lattice suitably coupled would demonstrateoupled map lattice of sine circle maps with nearest neighbor
such a mode-locking spatially. Synchronization is the sim-iffusive symmetric normalized couplin@lso called future

plest example of such a phenomenon and we focus our atoupled Laplacian couplingand periodic boundary condi-
tention on the synchronized states which are temporally peions, and is given by
riodic in an array of such coupled circle maps.

0, 1(D)=(1— ) F(6,(i))+ gf(at(i +1))+ gf(at(i ~1)) mod 1

—(1-¢) 0t(i)+9—%sin(2w0t(i)) +§ at(i+1)+9—%sin(2w0t(i+1))
+0t(i—1)+(2—%sin(Zwat(i—l))] mod1, 2

where 6,(i) is the angular variable associated with ilte  point case. Section Il presents the generalization to higher

site, at timet. spatial periods. In Sec. IV, the numerical simulations for the
The parameter€§) andK are taken to be uniform at each higher temporal periods, of the synchronized solution, are

site and defined as in E¢R) for the single circle map, and discussed. We extend the algorithm developed by &zé.

€ which lies between 0 and 1 is the strength of the Couplind25]v for the single circle map, to the synchronized solution

parameter. of a system of coupled sine circle maps. Section V concludes
We investigate in detail the phenomena of spatial synWith results and a short discussion.

chronization in a system of such coupled sine circle maps.

We identify the spatially homogeneous and temporally peri-

odic, quasiperiodic, and chaotic modes of the system. We |- ANALYSIS FOR THE SHIFT MAP LATTICE

carry out a linear stability analysis to analyze the stability \ve pegin by carrying out the analysis for the simplest

properties of the spatially synchronized, temporally periodiccase of Eq.(2), namely for K=0, which is the case of

solutions. The independent variables of the problem are idercoupled shift maps.

tified and the analysis is cast in terms of these independent The single shift map, i.e., the linear case of the single

variables. This leads to a neat and simple block diagonatircle map, namelyk =0 in Eq. (1), is given by

form for the stability matrix. This permits us to identify the

regions in parameter space where synchronized solutions of

different temporal periods are stable. The limits of the mode- 0;. 1= 6+ Q mod1. 3

locked interval for the temporal period-one case can be ex-

plicitly evaluated due to the fact that the stability matrix has

a block diagonal, block circulant structure, for this case. ThisThis has periodic orbits for rational values 6f, i. e.,

analysis is also extended to higher spatial periods. Oufl=P/Q, whereP andQ are any integers, and quasiperiodic

method is quite general and should prove to be useful in therbits for irrational values of).

study of spatially periodic behavior in other coupled map Equation(2), with K=0, for the coupled shift map, for a

lattice models as well. lattice of N sites, retaining periodic boundary conditions, re-
The paper is divided into five sections. Section | discussesguces to

the coupled shift map, which is the linear version of the

coupled circle map, namek =0 in Eq.(2), and is thus the

simplest case. We identify the independent variables for this . i € ) )

system and recast the equation of evolution in terms of these ft+1()=(1=€)[ (i) + Q]+ F[(i+ 1)+ 6,(i—1)]

variables. We carry out a systematic linear stability analysis,

and obtain a neat form for the stability matrix. In Sec. Il, we +€Q) modl. 4

extend the formalism to the system of coupled sine circle

maps, taking into account the nonlinear sine term as defined

in Eqg. (2) and cast the problem in terms of the independent For the synchronized solution, since the value of the vari-

variables of this system. The linear stability analysis in termsable at all sites is the same, we note that differences of near-

of these variables gives a neat block diagonal form for theest neighbor variable site values is equal to zero for all

stability matrix. This is followed by an explicit calculation of neighbors. Writing an equation for such a difference for the

the eigenvalues for the synchronized solution and the evaluirst pair of sites of an array dfl sites, for the coupled shift

ation of the limits of the mode-locked interval for the fixed map, we obtain
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P @=Ll o =) a1(i)=(1- )@ (i) + 5[ai+1)+a(i~1)] modl.
+ SL0(2)= 6(3)+ 6(N) = 6,(D)]. ™

(5)

_ _ Thus, for the synchronized solution of the coupled shift map,
It is clear that Eq(5) can be expressed completely in termsit is sufficient to define jusN differences, to obtain thal

of the differences defined by equations of evolution in terms of independent variables.
Substitutinga,(i) =0, in Eq. (7), givesa;,4(i)=0, and
a(i)=6,(i)— 6,(i+1). 6) hence shows that;(i) =0 is a spatial fixed point solution.

Expanding up to the linear term about this solution leads

The evolution equation of the differences is given by  to a stability matrixJ$"™, given by

€
1— — 0 0 0O O =
( €) 2
— (1—5) — 0 0 0 0
. € €
Jshift— 0 > (1—¢) > o --- 0 0 . 8
€ €
— 0 0 .-+ 0 0 = (1—-e¢
2 2

This is anNX N matrix, which is also circulant and whose not depend one, we conclude that, for the synchronized
eigenvalues may be explicitly obtained analytically. solution, there is no dependence of the coupling parameter
The eigenvalues oifh'“ are given by[26, 27| on the temporal behavior. Thus for the synchronized solu-
tion, the coupled shift map continues to have periodic orbits
for rational values of), and quasiperiodic orbits fdR irra-
N, =(1—e)+ E(w,+ wr—l), 9) tional,_ similar to the single shift map and th_ere is no enlarge-
2 ment in the phase space due to the coupling.

wherew, is the Nth root of unity given by

Il. LINEAR STABILITY ANALYSIS FOR THE COUPLED
) CIRCLE MAP LATTICE

w;exr{m . (10

N We now carry out a similar linear stability analysis with

the nonlinear terms, i.e., for the coupled circle maps as de-
fined in Eq.(2) with K# 0. We consider a 1D closed chain of
N lattice sites, with the sine circle map at each site, coupled
2m(r—1) to its nearest neighbors via diffusive normalized symmetric
AN=(1-e)te COS{T) r=1,2,...,N. (1)  coupling and periodic boundary conditions, as in E2),
such that the right hand neighbor of tN¢h point is the first

The largest eigenvalue of E¢ll), namely,\'29esl<q ~ lattice point. .
defines the stability condition for temporally stable and spa- As discussed in the case of the coupled shift maps, for a
tially synchronized periodic orbits of the coupled shift map.Synchronized solution, it makes sense to consider the evolu-
The largest eigenvalue is-1, indicating that the coupled tion of the differences. At any arbitrary tintewe write an
shift map is marginally stable. We find that as long as theequation similar to Eq(5), now for the coupled sine circle
differences between nearest neighbor sites tend to zero, weap. Consider, as an example, the first pair of lattice sites, of
obtain synchronized solutions, irrespective of the correa lattice ofN sites, with evolution at each site defined as in
sponding temporal period. Since, the largest eigenvalue dodsq. (2),

On simplifying, this can be written as
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K
Or+1(1) = 041(2)= (1~ 6){ (6:(1) = 61(2))— —sin(m(6(1) - 6:(2)))cos m(6(1) + 6(2)))

K
+ g (6:(N)— 6,(1)+(6:(2)— 6,(3))— ;Sin( m(6:(N)— 6,(1)))cog 7(6;(N)+ 6,(1)))

K
— —sin(m(6(2) — 6i(3))) cod m(6:(2) + 6,(3))) | mod1. (12

Equation(12) shows that for the coupled sine circle map, the evolution equation for differences between the variable values
of the nearest neighbors involves not just the differences between pairs of neighbors but also the sum of the variable values of
the nearest neighbors, unlike the coupled shift map where the evolution equation could be defined in terms of the differences
alone. However, it is interesting to note that for a synchronized solution, the difference of nearest neighbor lattice sites is zero,
and the sum of nearest neighbor lattice sites is a constant, for a@ixatlK. Therefore, we write a second equation for the
sums of the variables at nearest neighbor sites, and obtain

K
O (1) +6p1(2)=(1- 6)( (6(1)+ 61(2))— —sin(m(6,(1) + 6:(2)))cog m(6(1) — 6,(2)))

K
+ g (6:(N)+ 6,(1))+ (6,(2)+ 6,(3))— ;Sin(ﬂ'(at(N)"’ 6:(1))cos(m(6;(N)— 6,(1)))

+20 modl (13

K
- ;Sin( m(6:(2) + 6,(3)))cog m(6,(2) — 6,(3)))

which again involves both the sums and the differences of K

nearest neighbors. It is clear that for the synchronized solu-  by+1(i)=(1— 6)( be(i) — —sin(mby(i))cos(may(i))
tion of a lattice of coupled sine circle maps, we now need to

defineN equations for the evolution of differences of nearest €
neighbor sites an8ll equations for the evolution of sums of + 2
nearest neighbor sites as comparedltdifferences alone for

the coupled shift map. This is due to the fact that the shift )
map is a linear version of the circle map and in the case of X(i+1))
coupled circle maps the nonlinear sine term requires the
identification of the second independent variable. At any
time t, we define the differences and sums, of the nearest
neighbors, as follows:

b(i+1)— gsin(wbt(i +1))cod 7a,

. K.
bi(i—1)— ;Sln(’ﬂbt

L€
2

X(i—1))cogma(i—1))|+2Q modl. (17)

For a synchronized solution, as mentioned above, at any

ay(i)=0,(i)— 6,(i+1), (14  timet,
b(i)=6,(i)+6,(i+1), Vi;1,...N. (15) a(i)=0, (18
Using Eq.(2), we find that thai,(i) andb,(i) evolve via by(i) = const=s. (19

the following equations:
Inserting these conditions, E¢L6) reduces to

K
a+1(i)=(1—€)| a(i) — —sin(may(i))cog(mby(i)) a,.1()=0 (20)

€ . K. . implying thata,(i) =0 is a spatial fixed point solution.
+ 5| ali+1)— —sin(may(i+1))cogmb, Similarly, Eq.(17) reduces to

) € ) K K K
X(i+1) |+ 5| ali—1)— —sin(ma, ber1(i)=(1— e)(s— —sin(ws) | +¢| s— ;sin(rrs))
x(i—l))cos(a-rbt(i—l))) mod1 (16) +20 modi, (21)

which is again a constaiihot necessarily the same consjant
and for a fixed () andK.
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Equation(21) is not restricted to temporal evolution of stability matrixJ; which is of order 2 < 2N and of the form

any particular kind, implying that this same equation may be

used to study temporally periodic, quasiperiodic, and chaotic

) . ; Al B/
behavior. As an examplé, . 1(i) ='s the same constant will J— t t 29
indicate a temporal fixed point solution and so on. =\ B{ Al (22)
Thus a,(i) = 0 andb(i) = const are solutions of the
equations of evolution. We now perform a Taylor expansion
up to first order about these solutions to obtain the lineawhere
|
€A(l)  €,A(2) 0 0 €nA(N)
eA(l)  €A(2) eA(3) 0 0
0 €A(2)  €eA(3 0 0
At,: n 't( ) 5 t( ) (23)
enAr(1) 0 0  eAUN—1) €AN)
and
€sBi(1) €By(2) 0 0 €nBi(N)
enBi(1l) €Bi(2) €B(3) O 0
0 €,Bi(2) €By(3 0 0
Bt,: n .t( ) S t( ) (24)
€B(1) 0 0  €Bd(N-1) e&Bi(N)
|
Here A1) A(2) enAN)
enA(l)  eA(2) 0
€ 0 Al 0
es=(1—e),en=§. (25 M,= enfi(2) (29
Each &A1) O eA(N)
_ . _ For a synchronized solution all the lattice sites have the same
A(i)=(1—Kcodmay(i))codmhy(i))) (26)  value and hence eadi(i)=s Vi,1,... N. Thus each
A (i)=[1—Kcog ms)]. (30)
and
We thus have a block diagonal matrix with circulant
blocks. To study the stability of the homogeneous solution, it
B.(i)=(Ksin(ma;(i))sin(ab(i))). (27)  is sufficient to obtain the eigenvalues of one of the blocks

Imposing the conditiona,(i)=0, b,(i)=s the stability
matrix J;, Eg. (22) reduces to

M, O

3=l o wm, (28)

where eachM, is anN XN circulant matrix given by

M,.
The eigenvalues of; are given by Eq(9) [26,27)], but
are now of the form

)\r:(l—e)[l—Kcos{ws)]+wr(§[l—KCOS{WS)])

+w_1(f[1—Kcos(7rs)]) 31)
r 2 ]

wherew, is defined as in Eq(10).
On simplifying, Eq.(31) can be written as
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AN=(1—-¢e)[1-Kcogms)] Q

2m(r—1) Jt:tﬂl
N

Ai B
B, Al (37)
+e[1—Kcos{ws)]cos< , r=12,...,N.

(32) where all the notation is the same as defined earlier.
Imposing the condition for a synchronized solution,
Now, |\,|<1, for all r, ensures the stability of the syn- namely Eqs(18) and(19), J; reduces to the following form:
chronized solution. The largest eigenvali@'9¢st crossing

1, is the condition for marginal stabilify26]. QR (M O
As mentioned earlier, we have not assumed any temporal Jtztﬂl 0 M, (39)
periodicity while defininga;(i) andb,(i). They have been B

defined at any arbitrary timee Thus, as long as the condition . _ .
for synchronization, i.e.a,(i)=0 andby(i)=const is satis- The widths of the higher temporal periods for the synchro-

fied, this formalism may be used to identify and model anynized case cannot be obtained analytically, as has previously
kind of synchronized temporal behavior. been observed in the case of the single circle 2. To
For the synchronized solution, we can analytically 0b,[‘,iincalculate the widths of the higher temporal periods, for the

- : : - hronized solution we carry out numerical simulations
those regions in th€) — K — € space, for which the spatially sync . ; ; . :
synchronizedi.e., spatial period Jl and additionally tempo- which have been discussed in Sec. IV. A detailed discussion

ral period 1 solution, is stable. is pr_esented i29]. . . - .
Since the formalism set up here is sufficiently general, it

may also be used to model synchronization in other coupled
map systems. The next section extends the formalism for

For the temporal fixed point, i.ea;,,(i)=a,(i)=0 and  solutions corresponding to arbitrary spatial periods.
b,,1(1)=Db(i)=s, there is also a synchronized solution and

The fixed point case

hence also the spatial fixed point of the system. Using Eg. I1l. ANALYSIS FOR THE kTH SPATIAL PERIOD
(32), the largest eigenvalue of the stability matdixis given ] ) ) _
by We find that the formalism discussed above may be effi-
ciently used to study the stability of higher spatial periods as
Alargest=11 — Kcog 7s)]. (33)  well. We extend it to higher spatial periods with the stability
matrix retaining its block diagonal form. By higher spatial
Now, using the fixed point condition for E¢R1), periods, say spatial period 4, we mean evéth and

(i+4)th lattice site will have the same valy&ee Fig. 1b)].

We now extend this formalism to an arbitrary spatial pe-
riod k. At any timet, for a spatial periok solution, the
value of the variable at thigh site is the same as the value at
This gives the (i +Kk)th site. Thus, the difference between the variable
values of thath and the (+k)th site approaches zero, while
the sum of these variable values approaches a constant. As
discussed in Sec. I, now for a spatial periadwe can show
that the differences and sums are again the independent vari-
Inserting this value 0§ and using the condition for stability, ables of the system and are now defined as

\1argest= + 1 in Eq.(33), we obtain the width of the stability - _ .
interval, a(i)=0,(1) = (i + k), (39

0 -K K
s[al3])-(z7 2
1 2m 2 . . . .
where the superscrifitdenotes the spatial period at any time

This is the same width, as that obtained by Balal.[25] t. , , )
for the single circle map. This width is the width of that ~EQquations(16) and(17), now for a spatial period, are
region ofQ, for which we obtain stable fixed point solutions. Modified to
Thus, we find that for the synchronized solution, the width of
the 0/1 interval for the coupled circle map case is identical to gk (i)=(1—e)
that obtained for the single circle m@p5]. However, in this et
case it is the width of the 0/1 interval for each site, and since
the value of() at each site is the same, for the entire lattice. + £
Thus, for the region of), defined by Eq.(36), the entire 2
lattice has synchronized stable temporal fixed point solu-
tions. ><(i+1)))+
For higher temporal periods, the stability matdixcan be
obtained in the following way. For a perio@ orbit, J; is
simply given by X (i— 1))cos(77b't‘(i — 1))) mod1 (41

K
S=s— ;sin(ws)+20. (39

K (39

1 r( 270
S= —arcsl
T

| - bX(i)=6,(i) + 6,(i + k), (40)

ks _E : K ks
ag(i) 7Tsm(vrat(|))cosz(qrbt(l))

ak(i+1)— 5sin(qrak(i +1))cogmwhX
1 T t t

€

ak(i—1)— Esin(wak
217t T t
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and Vi,ak(i)=0 andbk(i)=s,, wheres,,s,, ... are all con-
stants, and are solutions of Eq4.1) and (42) for a fixed
Q andK.

K
b, (i) =(1— )| by(i)— —sin(mb(i k(i
tra(D)=( 6)( ()= Zsin(mby (i))codmay (1)) For a spatial periodk solution, we expand about

a(i)=0 andbk(i) = const and obtain the stability matrix
k

€ ks K. K ; K
+ 5 bi(i+1)— ;Sln(ﬂ'bt(l +1))coqwa, NI
i E Kiv 1) — E i k rk rk
X(i+1))|+ 5 bi(i—1) 7Tsm(wbt A" B
‘J{(: Bt/k Atrk , (43)
X (i—1))cogmak(i—1))| +2Q modl. (42
As shown in Sec. Il, here too it can be easily shown thatwhere
|
k k k
eA1)  €,A2) 0 0 nAK(N)
enAN1)  €AN2) €,AK3) 0 e 0
k k
At’k: O EnA.t(Z) ESAT(B) : : 0 0 @
€nA(1) 0 co 0 e A{N-1) €eANN)
and
k k k
eBX(1) €,B2) 0 0 €,BK(N)
eBX1) eBK2) €Bf3) 0 0
0 BX(2 BX3) - 0 0
S , s
. . : : . .
eBK(1) 0 . 0 €&BNN-1) eBNN)
|
whereeg, €, are defined by Eq25). Here, each €ANL)  €AN2) - e ANN)
g . . A1) €AN(2)
Af(i)=(1—Kcodma;(i))cogmbi(i))) (46) X
K 0 eAL(2) --- 0
Mi= (49
and . . .
enA(1) 0 S eANN)

By(i) = (Ksin(may(i))sin(wb{(i))). (47)

and each
Imposing the conditiona(i)=0 andbf(i)=s, the sta- B
bility matrix J¥ given by Eq.(43) again reduces to a block A Ki)=[1-Kcog7sy)], (50)
diagonal form

where eachm goes from 1. .. k [28]. See Fig. 1b) for an
MK 0 illustration of spatial period 4.
( ! ) (49) Thus even for higher spatial periods, the stability matrix
' J{‘ is in a block diagonal form, Eq48). Finding the eigen-
values of the matriM¥, and the largest eigenvalue crossing
+ 1, gives the region of stability of the peridd solution.
where eactM¥ is of the form, Further simplification of the matrid¥ (which is not circu-
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lant for thek#1 casepon the lines of the replica method For a generaP/Q step, and a lattice di sites, we start

[26] is possible and will be carried out elsewhere. with homogeneous initial conditions and perform the itera-
tive technique based on the Newton-Raphson method.
IV. NUMERICAL SIMULATIONS We define
We obtained the width ok (2(0/1)), the temporal period 91(6,9)={01(1),01(2), ... g:(N)}, (57)
1 case, for the synchronized solution analytically in Sec. Il.
The higher temporal periodyQ(P/Q), for the synchro- oL afQ ot of Q
nized solution, are obtained numerically. 92(0,Q)= 70.1) 9002) " 90(N) | (58

The widths, AQ(P/Q), as also stated in Sec. Il, are those
regions of(), atK=1, for which the entire lattice will have \ynhere
temporally stable and spatially synchronized periodic solu-

tions of time periodQ. 01(1)=f 6,0)—6(1)—P
We extend the algorithm developed by Betkal. [25], in

the following manner. and so on.
For a lattice ofN sites we define the following vector We further define

notation:

> > > > o> > o> > > > (évﬁ)

f(6,0)—{f1(0,9),1,(0,Q), ....f\(6,Q)}, (51 9(6,Q)= 5(8 Q)), (59

wherei denotes the lattice index and edghé,)) is defined  where now

by Eq.(2). Eaché is now a vector of the form oo
02(0,Q)=0,(60,Q) - 1.

(O)=A8D). 8(2). .6} 52 For the synchronized solution, it can be shown that the
and the paramete®, also a vector, is represented as largest eigenvalue of the matrig,, namelyx'29¢*! is equal
to each of theN components 062 in Eq. (58) [29].
(D)—{0(1),Q(2), ... QAN)]I—{Q,Q, ... QL Therefore, Eqs(55) and (56) may now be expressed as

(53)  finding (6*,0*) such that

Q, in principle, may have different values at each site, but in g(6*,Q*)=g*=0. (60)

this case has the same value at each site.

i Fora 1D| array Orf] COUpt')‘?lq sine circle m%ps_, '-z-’ba multi-  Taylor expandingg*, about the initial point of iteration,
imensional case, the stability criterion is obtained by examz 20 Goy_ o he linear order. w in

ining the eigenvalues of the followinly X N matrix: 9(0%,Q27)=go, up to the linear order, we obta

é’fl &fl afl g*zgo"'AM' (61)
0(1) 36,(2) d6(N) where
o [ e e O K= (ir.0%)— (°,00) 62
s | 72D 62 0N | sa ' '
I ; ‘ 0911 gy agy(h)  9gi(1)
ity oty it 90,(1) 90(N)  9Q(1) 2Q(N)
96(1)  96,(2) 96(N) : : : :
Let {\;} be the set of eigenvalues of the matBx. For a 991(N) 991(N)  991(N) 991(N)
period Q orbit to be stable the eigenvalues of the matrix [ d6i(1) d6(N) (1) dQ(N)
S:<1. The largest eigenvalue crossing 1 defines the marginéff'I | 9g.(2) agx(1)  dg,(1) 9g,(1)
stability condition. 20,(1) Y (N) 201 ce 20(N)
Thus for the higher order temporal periods, we seek the t t
solution to the set of Eq$55) and (56), : : : :
fO(6,0)=(6)+P, (55) 992(N)  9ga(N)  dgo(N)  dga(N)
90,(1) 90(N)  9Q(1) 2Q(N)
the condition for closure, and (63)
Alargest=1, (56) It is found that, for
the condition for marginal stability. g*=0, (64)
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FIG. 2. The devil's staircase for coupled sine circle maps. The ) )
symmetry abouf2=0.5 is clearly seen. The widths are calculated FIG. 3. Plot of the Arnold tongues, for the coupled sine circle
for AQ(P/Q) for P/IQ = 0/1, 1/1,1/2, 1/3, 2/3, 1/4, 3/4, 1/5, Map lattice. The tongues have been plotted ffor P/Q starting

2/5. This plot is for eight lattice sites, but for a synchronized solu-from P/Q = 0/1, 1/1,1/2, 1/3, 2/3 This plot is for eight lattice sites,
tion, identical results are seen for aNy but identical results are seen for aNy for the synchronized solu-

tion.
A=-M""go. (65 We identify the independent variables, the differences and
the sums of variable values at neighboring sit®¢i) and
b,(i) for the problem and show thata;(i)=0 and
- b:(i)=const, the synchronized solution, are solutions of the
‘f ) (66) system under consideration. Casting the evolution equations
Qo) in terms of these independent variables leads to a stability
matrix which is in a neat block diagonal form. In addition,
All derivatives can be derived recursivelg9]. these blocks have a circulant structure, so we have a block
We start with homogeneous initial conditions, for the syn-diagonal matrix with circulant blocks. The temporal fixed
chronized case, and find, to initiate the iteration, it is conve{point case, for the synchronized solution, i.e., the spatial pe-

nient to locate the superstable poidt () = (65,0, forall ~ riod one and temporal period one solution can be solved
the lattice sites, where now the eigenvalues of the matriXplicitly to obtain the corresponding width of the stability
S, are equal to zero. interval. We have also demonstrated that this analysis can be
Using the algorithm discussed aboveKat 1 we obtain easily extended to higher spatial periods. For an arbitrary
the complete devil's staircase, of periodic orbits, now in theSPat'a| per|0d< we identify the mdependent variables, now
O —P/Q— e space(see Fig. 2 with all the special features at(l) and b(i), and again show tha@(i)=0 and
seen in the single circle map. All steps have been found to ab{(i) =k const are solutions of the system. A linear stability
accuracy of 108. analysis for this case shows that the stability matrix retains
We also studied various features of the coupled sine circlés block diagonal form. This analysis may also be easily
map lattice at lower values &f and different()’s. Our simu-  extended to spatially periodic behavior in other coupled map
lations reveal synchronized quasiperiodic orbits and periodisystems. The analysis is one of the simplest presented so far
orbits in theQ) — K — € space. We thus obtain the entire struc-with the additional advantage of being transparent and neat.
ture of the Arnold tonguesgsee Fig.3 now with the third We calculate the widths of the higher temporal periods for
coupling dimensiore. It is clear from Fig. 3 that the three the synchronized case, by extending the algorithm developed
possible routes to chaos seen in the case of the single circhy Baket al.[25]. Our numerical simulations reveal that for
map, i.e., via mode-locking alone, via quasiperiodicity andthe synchronized case, the entire structure of the Arnold
mode-locking and via quasiperiodicity to chaos, will also betongues and the devil's staircase as observed for the single
seen for the coupled sine circle map lattice. circle map is lifted to the chain of coupled sine circle maps.
Thus for the synchronized solution, we obtain all the fea- A study of the parameter basins of attraction, i.e., those
tures of the single map, now with a third dimension, in theregions in the(d — e space, where a particular class of initial
form of the coupling parameter. We also observe that for th€onditions converges to the synchronized solution, which is
synchronized solution all the features as seen in the singlthe attractor, have also been carried out. These results which
circle map are lifted exactly to this extra dimension in thehave been presented elsewh¢28] showed that these re-

parameter space, namely the coupling parametdor the  gions were found to be fairly large and showed an interesting
entire range, &e<1. symmetry abouf)=0.5. Random initial conditions also re-

vealed a finite basin of attraction, which was also symmetric

about 0=0.5. The numerical simulations for the random

initial conditions showed that there always exists a finite
We have set up a formalism to analyze the phenomenoregion of the(l—e parameter space, & =1, for which

of synchronization in a lattice of coupled sine circle maps.synchronized solutions will be obtained. The temporal period

And so as a first approximation,

o 6" .
|| o =

V. CONCLUSIONS
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for these synchronized regions was found to Hedl. study of spatially periodic behavior in systems like Joseph-
Investigation of higher spatial periods reveals extremelyson junction arrays and coupled oscillator arrays and in stud-
interesting structures, results of which will be presented elseies of pattern formation, in reaction-diffusion systems, and
where. Our analysis was carried out for the homogeneousharge-density waves.
case which assumed that the parameter values at each lattice
site were the same. However,_ the formallsm_setup is com- ACKNOWLEDGMENTS
pletely general and can be easily extended to inhomogeneous
cases. This should be useful for the study of lattices where One of the author$N.G.) acknowledges UGC and DST
some lattice sites function as pinning sites. India, and N.C. gratefully acknowledges CS(Ridia), for
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